
1.

2.
3.

a.

b.

c.

d.

4.

1.
2.

3.
4.
5.

1.

a.
b.

2.

3.

4.
5.
6.
7.

8.

Linux CentOS Installation

NetVizura Installation Steps
To install NetVizura follow these steps:

Step 1: sudo command installation: yum install sudo

:Step 2 Oracle Java 1.7 package installation:

download .rpm JDK package from http://www.oracle.com/technetwork/java/javase/downloads
/index.html
install the downloaded package: rpm -Uvh file_name.rpm
execute the following commands (adjust the filepath to the JDK installation path if needed)

alternatives --install /usr/bin/java java /usr/java/jdk1.7.0_21
/jre/bin/java 20000
alternatives --install /usr/bin/javaws javaws /usr/java/jdk1.7.0
_21/jre/bin/javaws 20000
alternatives --install /usr/bin/javac javac /usr/java/jdk1.7.0
_21/bin/javac 20000
alternatives --install /usr/bin/jar jar /usr/java/jdk1.7.0_21
/bin/jar 20000

check if Java is properly installed with command java -version

Step 3: Apache Tomcat 6 package installation:

execute command yum install tomcat6
in folder edit file : change the line " " to "/usr/sbin tomcat6 set_javacmd JAVACMD=/usr/java/latest

"/bin/java
save changes and start tomcat: service tomcat6 start
verify that Tomcat is running properly with the command service tomcat6 status
add Tomcat service to system startup: chkconfig tomcat6 on

Step 4: PostgreSQL package installation:

edit file /etc/yum.repos.d/CentOS-Base.repo

in section [base] add line " "exclude=postgresql*
in section [updates] add line "exclude=postgresql*"

go to http:// and choose appropriate PostgreSQL package in regard to your yum.postgresql.org/
CentOS version and architecture.
CentOS 6, 64 bit example: http://yum.postgresql.org/9.3/redhat/rhel-6-x86_64/pgdg-centos93-
9.3-6.noarch.rpm
in the folder where the file is downloaded execute command rpm -ivh pgdg-centos93-
9.3-6.noarch.rpm
execute command yum install postgresql93-server
execute command service postgresql-9.3 initdb
execute command service postgresql-9.3 start
verify that PostgreSQL is running properly with the command service postgresql-9.3
status
add service to system startup: PostgreSQL chkconfig postgresql-9.3 on

Step 5: Installing NetVizura package

On this page:

NetVizura Installation Steps
Post Install Steps

Tomcat Memory Allocation
Tweaking PostgreSQL

PostgreSQL "safe"
tweaks
PostgreSQL "unsafe"
tweaks

Before installing NetVizura make sure to set the time on your server correctly. Time change
after the installation will invalidate the license!

Before installing NetVizura you will have to install: Oracle Java 1.7, Apache Tomcat 6 and
PostgreSQL 9.3 or higher, in that order. The installation process has been tested on CentOS
6.6.

Default Java implementation is OpenJDK. You need to install Oracle Java package. Java
packages should be installed before the Tomcat6 packages, if not Tomcat will use OpenJDK.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://yum.postgresql.org/
http://yum.postgresql.org/9.2/redhat/rhel-6-x86_64/pgdg-centos92-9.2-6.noarch.rpm
http://yum.postgresql.org/9.2/redhat/rhel-6-x86_64/pgdg-centos92-9.2-6.noarch.rpm

1.

After this steps, install the NetVizura package downloaded from the website with the command yum
localinstall downloaded_file_name.rpm

Step 6: Verify installation

Now you can go to NetVizura web interface .http://serverip:8080/netvizura

Default login credentials:

Username: admin
Password: admin01

For example, if your server IP is 1.1.1.1 then point your browser to like in the http://1.1.1.1:8080/netvizura
screenshot below:

Post Install Steps

Tomcat Memory Allocation

After installation tweaking of configuration files is required in order to utilize the installed RAM to the
fullest extent. The main consumers of RAM are operating system, PostgreSQL database and Tomcat.
General rule for distributing memory is to split it in ratio 2:1 between PostgreSQL and Tomcat with 1 GB
or more reserved for operating system.

For instance:

Installed RAM PostgreSQL Tomcat OS

4 GB 2 GB 1 GB 1 GB

16 GB 10 GB 5 GB 1 GB

During installation NetVizura automatically allocates memory for Tomcat process. The amount allocated
to Tomcat process is calculated according to the formula:

(RAM - 1GB) / 3total but no less than 1GB.

For instance:

Total RAM Tomcat

3 GB 1 GB

4 GB 1 GB

16 GB 5 GB

However, if you need to tweak Tomcat RAM allocation differently (the example for 2048MB):

http://serverip:8080/netvizura
http://1.1.1.1:8080/netvizura

1.
2.

3.

4.

Edit file /etc/tomcat6/tomcat6.conf
Locate environment variable that defines memory This line looks something like the JAVA_OPTS
following:
JAVA_OPTS="${JAVA_OPTS} -Xmx1024m -Xms1024m"
Modify the and to the same amount. This should look something like:-Xmx -Xms
JAVA_OPTS="${JAVA_OPTS} -Xmx2048M -Xms2048M"
Save the file and restart Tomcat: service tomcat6 restart

Tweaking PostgreSQL

Tweaking PostgreSQL for best performance is a topic on which many books were written, but the
following are some common sense suggestions. In general there are two groups of PostgreSQL tweaks
that are helpful for NetVizura performance - "safe" and "unsafe" tweaks. "Safe" tweaks are those which
can be applied in all cases. "Unsafe" tweaks trade reliability for performance. For the curious ones
recommended reads (among countless others) are , PostgreSQL Optimization Guide PostgreSQL Tuning

, this and this .Guide article book

In order to apply following tweaks edit file /var/lib/pgsql/PG_VERSION_NUMBER/data
. You will need to restart the PostgreSQL service after done editing with command: /postgresql.conf

. Almost all of the following parameters are commented with carron service postgresql restart
character (). Although these tweaks are considered "safe" do take notice of the default values. Usually #
you can comment out the parameter that has been changed and PostgreSQL will revert to the default
value.

PostgreSQL "safe" tweaks

In the following example it is assumed that 4 GB of RAM is allocated for PostgreSQL.

parameter recommended
value

comment

max_connections 30 NetVizura rarely uses more than 10 connections
simultaneously, but it is good to have some reserve

shared_buffers 1024MB the recommended amount is RAM/4

effective_cache_
size

2048MB the recommended amount is , possibly evenRAM/2
RAM * 3/4

chekpoint_segmen
ts

32 for write intensive apps (as NetVizura) it should be at
least 16, with 32 as safe maximum

checkpoint_compl
etion_target

0.9

default_statisti
cs_target

100

work_mem 8MB - 12MB The formula used is max_connections*work_mem <=
, but using a bit more is still "safe"RAM/8

PostgreSQL "unsafe" tweaks
These optimizations are considered "unsafe" since they in very rare cases lead to data loss and/or could
corruption. If your VM is properly backed up we would consider the following optimizations safe. The
following bring huge performance boosts to DB write process.

parameter recommended
value

comment

maitenanc
e_work_mem

32MB speeds up DB self clean process, not really important

wal_buffe
rs

16MB

full_page
_writes

off

fsync off don't wait for HDD to finish previous operation. This brings write
the most benefit, but is considered potentially the most unsafe of
all. If there is OS or HDD failure in exact instant when PSQL
issues write command to HDD, that data will be lost and the DB
itself could be corrupted. On the other hand, DB can issue several
magnitude more write commands in the same time period and
consider all these done, thus improving write performance
immensely.

http://wiki.postgresql.org/wiki/Performance_Optimization
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.linux.com/learn/tutorials/394523-configuring-postgresql-for-pretty-good-performance
http://www.packtpub.com/postgresql-90-high-performance/book

synchrono
us_commit

off similarly to "fsync" but less unsafe and with less benefit

checkpoin
t_segments

64 how much is cached in temp files before it is issued to DB proper
files. Issuing big chunks of data for write rarely is usually better for
performance than issuing small chunks often

	Linux CentOS Installation

