
1.

2.

a.

Linux DEB (Ubuntu) Installation

On this page:

NetVizura Installation Steps
Post Install Steps

Tweaking Tomcat memory
allocation
Tweaking PostgreSQL

PostgreSQL "safe"
tweaks
PostgreSQL "unsafe"
tweaks

NetVizura Installation Steps
To install NetVizura follow these steps:

Step : sudo package installation: execute1 apt-get install sudo

Step 2: Oracle Java 1.7 package installation:

in file /etc/apt/sources.list, add the following lines:

deb http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main

deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main

execute command apt-get update

ignore the error about "public key is not available"

Before installing NetVizura make sure to set the time on your server correctly. Time change
after the installation will invalidate the license!

Before installing NetVizura you will have to install: Oracle Java 1.7, Tomcat 7 and PostgreSQL
9.2 or higher, in that order. The installation process has been tested on Ubuntu 14.

Default Java implementation is OpenJDK. You need to install Oracle Java package. Java
packages should be installed before the Tomcat7 packages, if not Tomcat will use OpenJDK

1.
2.
3.

1.

2.

3.
4.
5.

 3. execute command and answer affirmatively to apt-get install oracle-java7-installer
"Proceed without verification" and all other installation questions

 4. execute command ln -s /usr/lib/jvm/java-7-oracle /usr/lib/jvm/default-java to

set Oracle's Java as a default Java on the system

 5. check if java is properly installed with command java -version

:Step 3 Tomcat 7 package installation:

execute command apt-get install tomcat7
start Tomcat: service tomcat7 start
verify that Tomcat is running properly with the command service tomcat7 status

Step 4: PostgreSQL package installation

Create a file in with some text editor: pgdg.list /etc/apt/sources.list.d/ nano /etc/apt
 and add the following line: /sources.list.d/pgdg.list

deb http://apt.postgresql.org/pub/repos/apt/ trusty-pgdg main
execute command: wget --quiet -O - http://apt.postgresql.org/pub/repos
/apt/ACCC4CF8.asc | sudo apt-key add -
execute command apt-get update
execute command apt-get install postgresql postgresql-client
verify that PostgreSQL is running properly with the command service postgresql status

Step 5: NetVizura packages installation
After this steps, install the NetVizura packages downloaded from the website with the command: dpkg -

i downloaded_file_name.deb

To access the application, type in your browser. The with http://myip:8080/netvizura default user account
administrator privileges is: username: admin, password: admin01

If you receive something like:

W: GPG error: trusty InRelease: The following http://ppa.launchpad.net
signatures couldn't be verified because the public key is not available:
NO_PUBKEY C2518248EEA14886
W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/trusty-security

 Hash Sum mismatch/main/source/Sources

W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/trusty-security
 Hash Sum mismatch/universe/source/Sources

W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/trusty-security
 Hash Sum mismatch/main/binary-amd64/Packages

W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/trusty-security
 Hash Sum mismatch/universe/binary-amd64/Packages

W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/trusty-security
 Hash Sum mismatch/main/binary-i386/Packages

W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/trusty-security
 Hash Sum mismatch/universe/binary-i386/Packages

E: Some index files failed to download. They have been ignored, or old
ones used instead.

enter the following commands:

rm /var/lib/apt/lists/* -vf

apt-get update

http://myip:8080/netvizura

1.
2.

3.

4.
5.

6.

7.

Post Install Steps
After installation it is needed to tweak the configuration files in order to utilize the installed RAM to the
fullest extent. The main consumers of RAM are operating system, PostgreSQL database and Tomcat. A
rule of thumb for distributing memory is to split it in ratio 2:1 between PostgreSQL and Tomcat with 1 GB
or more reserved for operating system. For instance:

Installed RAM PostgreSQL Tomcat OS

4 GB 2 GB 1 GB 1 GB

16 GB 10 GB 5 GB 1 GB

Tweaking Tomcat memory allocation

In the following example 1 GB of RAM is allocated for Tomcat process:

Edit file /etc/default/tomcat7
Locate JAVA_OPTS environment variable that defines memory and uncomment it if it is
commented. This line looks something like the following:
JAVA_OPTS="-Djava.awt.headless=true -Xmx128M -XX:+UseConcMarkSweepGC"
Modify the parameter to allocate additional memory to Tomcat. Additionally, set parameter -Xmx

 to the same amount as . This should look something like:-Xms -Xmx
JAVA_OPTS="-Djava.awt.headless=true -Xms1024M -Xmx1024M -XX:
+UseConcMarkSweepGC"
Edit file /etc/init.d/tomcat7
Locate environment variable that defines memory. This line looks something like JAVA_OPTS
the following:
JAVA_OPTS="-Djava.awt.headless=true -Xmx128M"
Modify the parameter. Additionally, set parameter to the same amount as-Xmx -Xms -Xmx.
This should look something like:
JAVA_OPTS="-Djava.awt.headless=true -Xms1024M -Xmx1024M"
Save the file and restart Tomcat: service tomcat7 restart

Tweaking PostgreSQL

Tweaking PostgreSQL for best performance is a topic on which many books were written, but the
following are some common sense suggestions. In general there are two groups of PostgreSQL tweaks
that are helpful for NetVizura performance - "safe" and "unsafe" tweaks. "Safe" tweaks are those which
can be applied in all cases. "Unsafe" tweaks trade reliability for performance. For the curious ones
recommended reads (among countless others) are , PostgreSQL Optimization Guide PostgreSQL Tuning

, this and this .Guide article book

In order to apply following tweaks edit file /etc/postgresql/PG_VERSION_NUMBER/main
. You will need to restart the PostgreSQL service after done editing with command: /postgresql.conf

. Almost all of the following parameters are commented with carron service postgresql restart
character (). Although these tweaks are considered "safe" do take notice of the default values. Usually #
you can comment out the parameter that has been changed and PostgreSQL will revert to the default
value.

PostgreSQL "safe" tweaks

In the following example it is assumed that 4 GB of RAM is allocated for PostgreSQL.

parameter recommended
value

comment

max_connections 30 NetVizura rarely uses more than 10 connections
simultaneously, but it is good to have some reserve

shared_buffers 1024MB the recommended amount is RAM/4

effective_cache_
size

2048MB the recommended amount is , possibly evenRAM/2
RAM * 3/4

chekpoint_segmen
ts

32 for write intensive apps it should be at (as NetVizura)
least 16, with 32 as safe maximum

checkpoint_compl
etion_target

0.9

default_statisti
cs_target

100

http://wiki.postgresql.org/wiki/Performance_Optimization
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.linux.com/learn/tutorials/394523-configuring-postgresql-for-pretty-good-performance
http://www.packtpub.com/postgresql-90-high-performance/book

work_mem 8MB - 12MB The formula used is max_connections*work_mem <=
RAM/8, but using a bit more is still "safe"

PostgreSQL "unsafe" tweaks
These optimizations are considered "unsafe" since they could in very rare cases lead to data loss and/or
corruption. If your VM is properly backed up we would consider the following optimizations safe. The
following bring huge performance boosts to DB write process.

parameter recommended
value

comment

maitenanc
e_work_mem

32MB speeds up DB self clean process, not really important

wal_buffe
rs

16MB

full_page
_writes

off

fsync off don't wait for HDD to finish previous write operation. This brings
the most benefit, but is considered potentially the most unsafe of
all. If there is OS or HDD failure in exact instant when PSQL
issues write command to HDD, that data will be lost and the DB
itself could be corrupted. On the other hand, DB can issue several
magnitude more write commands in the same time period and
consider all these done, thus improving write performance
immensely.

synchrono
us_commit

off similarly to "fsync" but less unsafe and with less benefit

checkpoin
t_segments

64 how much is cached in temp files before it is issued to proper DB
files. Issuing big chunks of data for write rarely is usually better for
performance than issuing small chunks often

	Linux DEB (Ubuntu) Installation

